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Numerical Solution of a Three-Phase
Stefan Problem with High Power
Input

GUIDO PARISSENTI and ALFONSO NIRO
Politecnico di Milano, Dipartimento di Energia, Milano, Italy

The numerical solution of a one-dimensional, three-phase Stefan problem with a low Stefan number is presented. Joule
heating and thermal radiation are demonstrated to be negligible compared to the high power input. The front tracking
method is used along with a second-order Lagrangian interpolation of the temperature profile near the moving surface
defined by the location of the phase change. Results are compared with analytical, numerical, and experimental solutions
available in literature.

INTRODUCTION

Being vacuum the best dielectric it is obvious its applica-
tion in technological situations involving high current levels to
be shut off safely and as instantaneously as possible. Vacuum
switches apply this principle, and for this reason they have a key
role in many high power electrical systems. One of the prob-
lems affecting such devices is the appearance of electric arcs
between the electrodes due to the sometimes extremely high
current level involved. Arcs happen because absolute vacuum
is not achievable and a few electric carriers are always present.
The intense heat fluxes of arcs can damage switches by melting
the electrodes locally. In fact, these phenomena happen in small
zones that appear like small spots after the arc. These spots,
with different shapes and dimensions, can be found on either
electrode, causing erosion.

Because spots appear to be a key element in understanding
arc formation and extinction, a Stefan multiphase thermal model
of the spot formation is presented here. Historically, for this kind
of problem very few analytical solutions have been found and
only for the simplest cases with no more than two phases [1, 2],
applied for infinite or semi-infinite regions. The same solution
can instead be easily obtained numerically [3] with the possibil-
ity of solving more difficult problems [4]. Three-phase problems
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have been already solved numerically in the past [5], but using
complex and rigid finite-element methods, unsuitable to be in-
serted into larger codes for the simulation of complex physical
problems involving not exclusively thermal phenomena. Hence
the purpose of this paper is to describe the application of a com-
mon finite-difference technique coupled with the front tracking
method to this complex multiphase problem. We show the flex-
ibility of the formulation, as well as that the results obtained are
in good agreement with the literature. Due to its simplicity and
low computation time, the presented approach can be used to
preliminary evaluate damages occurring on electrode surfaces
during initial sizing and design of vacuum switches. In addi-
tion, the presented method can be applied to every application
that involves concentrated high-power deposition on surfaces,
that is, electric thrusters for in-space propulsion or even laser
ablation. More complex and multidimensional methods can be
successively applied to increase the detail of the solution [6–8].

PHYSICAL DESCRIPTION OF THE THERMAL MODEL

Spots are small craters formed by an electric arc onto the
electrode surface and they are usually round with a melted in-
ternal surface. The image in Figure 1 shows some spots cratered
by an arc with a current density on the order of 109A/m2 on an
aluminum anode.

Single spots from high-current electric arcs usually are much
smaller than the electrode where they form [9–12]. In addition,
the depth of the spot is much smaller, at least three times, than
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Figure 1 Spots on aluminum anode.

its diameter [9, 12]. From an analytical point of view, Lehr and
Kristiansen [13] show that if the diffusion length (αs td )1/2 is
four times smaller than the electrode thickness by the incident
heat flux direction, the electrode itself can be considered infinite
in extent (td is a phenomenon characteristic time like the total

discharge time, e.g., near 1 ms). For copper this leads to a
diffusion length of 0.35 mm, much smaller than the thickness
of a typical electrode. Therefore, the problem can be considered
as one-dimensional. A schematic representation of the model is
shown in Figure 2 and it can be mathematically described by
the following set of equations.

Heat diffusion equations:

ks
∂2Ts

∂ X2
+ ηs j2 = ρcs

∂Ts

∂t
for S1 < X < a (1)

kl
∂2Tl

∂ X2
+ ηl j2 = ρcl

∂Tl

∂t
for S2 < X < S1 (2)

Stefan equations on moving surfaces:

ks
∂Ts

∂ X
− kl

∂Tl

∂ X
= ρCm

d S1

dt
for X = S1, t > t1 (3)

kl
∂Tl

∂ X
+ F (t) = ρCv

d S2

dt
for X = S2, t > t2 (4)

Figure 2 Stages of the model.
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Initial conditions:

Ts = Ti for t = 0 (5)

S1 = 0 for t < t1 (6)

S2 = 0 for t < t2 (7)

Boundary conditions:

Ts = Ti for X = a (8)

−ks
∂Ts

∂ X
= F(t) for X = 0, t < t1 (9)

−kl
∂Tl

∂ X
= F (t) for X = 0, t1 < t < t2 (10)

Ts = Tl = Tm for X = S1, t > t1 (11)

Tl = Tv for X = S2, t > t2 (12)

The model can be described as a semi-infinite solid (approx-
imate as a slab of length a � (αs td )1/2) in the region X > 0,
where X is the spatial coordinate perpendicular to the surface,
where the heat flux F(t) is applied at X = 0. Additional terms
for radiation as well as for Joule heating are also considered.
The F(t) flux first raises the solid temperature to the melting
value Tm (Stage 1). At this time t1 a new phase appears with a
new domain for the liquid phase. Hence, the original slab is split
into two different time-varying domains. While the surface S1

is moving following Eq. (3), the temperature in the liquid phase
starts rising until the vaporization temperature Tv is attained at
t = t2 (Stage 2). At this time, the surface S2 appears and starts
moving following a relation similar to those for S1 (Stage 3).

We assume all thermal properties of the electrode are con-
stant. Although in the vapor phase a temperature profile does
not exist because vapor is assumed to be removed as soon as it
forms, in the solid and liquid phases the temperature dynamic is
ruled by the heat diffusion equations. At each moving surface,
the Stefan equation (described by Eqs. (3) and (4)) is introduced,
to take into account the energy balance between the heat flux
coming from the two phases and the change in internal energy
due to the melting or vaporization. For the numerical solution,
obviously, it is not possible to consider a semi-infinite domain,
so we consider the solid as a slab in the domain 0 < X < a with
a � rd . Because of this hypothesis, we assume that at X = a
temperature should always remain equal to the initial tempera-
ture Ti , and temperature gradient is null. The verification of these
conditions means that the region remains unchanged; neverthe-
less, only one of the two conditions (Dirichlet or Neumann—null
temperature gradient) can be imposed; fixing one of these two
boundary conditions at X = a in the finite differences code is
only a matter of choice, as both should be verified after the sim-
ulation, to check whether a has been taken sufficiently large. We
decided to impose the Dirichlet condition, except in comparing
to other codes, where the test case condition was used.

Liquid and solid are considered to have the same density ρ

to allow a simpler manipulation of the Stefan equations and to
avoid thermal expansion. The error is no larger than around 10%
for both copper and aluminum.

FINITE DIFFERENCES DISCRETIZATION
AND FRONT TRACKING METHOD

The most difficult issue in using a finite-difference method
for this kind of problem is the time dependence of the domains.
We cannot assume the moving boundaries always lie on a node
of the mesh, and therefore we do not have a unique domain. Con-
sidering two separate domains with different discretizations is
also difficult, because at the beginning of the simulation one
of them will be very small or null. To bypass these problems
is it possible to use the front tracking method [2]. The posi-
tions S1 and S2 of the moving boundaries are obtained from the
integration of the Stefan equations (3) and (4), and therefore
are not required to be a multiple of the mesh size. Let us say
that at any simulation time step the phase-change boundary is
located between two consecutive grid points, for example, iδX
and (i + 1)δX . To be able to define the finite difference form of
the heat transfer equations (1) and (2) for these two points, we
need to use a second-order Lagrangian interpolation to allow
unequal spatial intervals. We show that the appearance of the
solid–liquid boundary requires us to lower the order of the inter-
polation to 1 for the initial step because the domain is restricted
to only one node.

As previously mentioned, this model considers heat genera-
tion and thermal radiation. The former is the term η j2 in Eqs. (1)
and (2) due to the current that flows into the spot and resistively
heats the material. The thermal radiation can be considered in a
very simple way by dividing F(t) into two parts:

F(t) = F̃(t) − qr (t) where qr (t) = σε
(
T 4

sur f − T 4
i

)
where qr (t) is the heat flux that leaves the external surface (solid
or liquid, depending on the phase status). F̃ (t) can be considered
the external heat flux that flows into the anode, depending on
the physics of the problem.

Nondimensionalization

The first operation is the nondimensionalization of the equa-
tions. The advantages to this operation are a simplification in
writing the finite-difference form and the ability to obtain the
Stephan number, a dimensionless value that gives information
about the problem dynamics. Some characteristic parameters
are chosen for this operation:

x = X

r
xs,l = Xs,l

r
s1,2 = S1,2

r

τ = kst

csρr2

us = Ts

Tm
ul = Tl

Tm
uv = Tv

Tm

(13)
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All the symbols are explained in the Nomenclature section.
Substituting these dimensionless variables into Eqs. (1) and

(2) we have:

∂2us

∂x2
+ gs = ∂us

∂τ
for s1 < x <

a

r
(14)

∂2ul

∂x2
+ gl = k̃

∂ul

∂τ
for s2 < x < s1 (15)

where

k̃ = ks

kl

cl

cs
gs = ηs j2r2

ks Tm
gl = ηl j2r2

kl Tm

Equations (3) and (4) can be manipulated in the same way:

Ste
∂us

∂x
− γl

∂ul

∂x
= ds1

dτ
for x = s1, τ > τ1 (16)

γlv
∂ul

∂x
+ f (τ) = ds2

dτ
for x = s2, τ > τ2 (17)

where

γl = kl Ste

ks
Ste = cs Tm

Cm

γlv = klλv

ks
f (τ) = F(t)rλv

ks Tm
λv = cs Tm

Cv

The Stefan number Ste expresses the importance of sensible
heat relative to latent heat. For metals like aluminum, copper,
tin, and other, the Stefan number is small, in the order of unity.
This means that the heat released or absorbed by the interface
during phase change is mostly unaffected by the variation of
internal thermal energy of the material [14]. The boundary and
initial conditions can be transformed as follows:

us = ui for x = a

r
(18)

∂us

∂x
= − fs (τ) for x = 0, τ < τ1 (19)

∂ul

∂x
= − fl (τ) for x = 0, τ1 < τ < τ2 (20)

us = ul = uB = 1 for x = s1 (21)

ul = uv for x = s2 (22)

us = ui for τ = 0 (23)

s1 = 0 for τ < τ1 (24)

s2 = 0 for τ < τ2 (25)

where

fs(τ) = F(t)r

ks Tm
fl (τ) = F(t)r

kl Tm

Solid

ul(nl-2)

x

ul(nl-1) ul(nl) us(1s) us(2s)uB

dx pdx

i-2 i-1 i+1 i+2i

nl-2 nl-1 nl 1s 2s

Liquid

x 
= 

s 1
(t

)

Figure 3 Lagrangian-type interpolation for solid–liquid boundary.

Lagrangian-Type Interpolation

The Lagrangian-type interpolation method used by Crank [2]
allows a modification of the finites difference formulae incor-
porating unequal spatial intervals near the moving boundary.
Using a second-order scheme based on three points, a generic
function u(x) can be represented as

u(x) =
2∑

j=0

l j (x)u(a j ) (26)

l j (x) = p2(x)

(x − a j )
dp2(x)

dx

∣∣∣∣
x=a j

p2(x) = (x−a0)(x−a1)(x−a2)

(27)

where u(a0), u(a1), and u(a2) are three known values of u(x) at
the points x = a0, a1, a2. From u(x), is it possible to obtain the
first and second derivatives expressed in terms of a j .

Referring to Figure 3, where the moving boundary between
liquid and solid is shown to be at a fractional distance pdx from
the considered node i, it is possible to specialize the preceding
formulas to obtain the derivative in these two spatial intervals.
Substituting values for a j and u(a j ), pertaining to the solid
phase,

aj u(aj)

a0 = (i + 1 − (1 − p))dx = (i + p)dx uB

a1 = (i + 1)dx ui+1
s = u1

s
a2 = (i + 2)dx ui+2

s = u2
s

we write the derivatives

∂2us

∂x2
= 1

dx2

(
uB

(1 − p)(2 − p)
− u1

s

1 − p
+ u2

s

2 − p

)
(28)

for x = (i + 1) dx , the first node of the solid domain, and

∂us

∂x
= 1

dx

(
2 − 3p

(1 − p)(2 − p)
uB + 2 − p

1 − p
u1

s − 1 − p

2 − p
u2

s

)

(29)
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for x = s1(t) the interpolated point. The last derivative will be
used for the Stefan equation. Analogously for the derivative of
the liquid temperature profile we can substitute

aj u(aj)

a0 = (i − 1)dx ui−1
l = unl−1

l
a1 = idx ui

l = unl
l

a2 = (i + p)dx uB

obtaining

∂2ul

∂x2
= 2

dx2

(
unl−1

l

p + 1
− unl

l

p
+ uB

p(p + 1)

)
(30)

for x = idx , the last node of the liquid domain, and

∂ul

∂x
= 1

dx

(
p

p + 1
unl−1

l − (p + 1)

p
unl

l + 2p + 1

p (p + 1)
uB

)

(31)

for x = (i + p) dx , the interpolated point. Equation (28) should
be used for the first node of the mesh, and Eq. (30) for the last
node of the mesh. Equations (29) and (31) are to be used in Eq.
(16). These substitutions produce the finite difference equations
that are calculated at every step s1(kdτ). Writing s1(kdτ) =
(i + pk)dx and using the first-order Euler approximation of
ds/dt we can obtain

pk+1 = pk + dτ

dx2

(
γs

∂us

∂x
− γl

∂ul

∂x

)
(32)

This equation is valid for the solid–liquid moving boundary
in Stages 2 and 3. For the liquid-vapor moving boundary the
same Eq. (29), with ul in place of us , can be used with Eq. (17)
to obtain the final form

vk+1 = vk + dτ

dx

(
γl

∂ul

∂x
+ f (τ)

)
(33)

where v is the parameter used to track the movement of the
boundary s2(t) = (i + v) dx .

To manage the movement of the boundaries we update at
every time step the fractional parameters p and v. Their values
lie between 0 and 1, meaning the relative boundary lies between
two nodes, except when p > 1, which means that the moving
boundary passed a node. To simulate this we remove the node
from the solid domain and add a node to the liquid one. Calculat-
ing pk+1 = pk −1 we obtain the starting p for the spatial interval
dx . For the liquid–vapor boundary we simply remove one node
from the liquid domain without any additional operation, fol-
lowing the assumption that the vapor is continuously removed
from the surface. This operation requires the determination of
a temperature for the new node added in the liquid domain.
Lacking physical principles to address this problem (the conser-
vation of energy has been already used for the Stefan equation
and does not provide any further information), we can again use
the Lagrangian interpolation of Eq. (26). Before adding the new
node, with p > 1, we can obtain the temperature in the position

x = (i + 1) dx using the information at nodes (i − 1) dx (where
u = unl−1

l ), idx (where u = unl
l ), and (i + p) dx (where u = uB

by definition of s1) obtaining:

ui+1,k
l = 1 − p

1 + p
ui−1,k

l + 2(p − 1)

p
ui,k

l + 2

p(p + 1)
uB

(34)

This is not a strict condition. The space and time steps are
usually small, so it happens that ui+1

l is very close to uB . We
verified that imposing the condition ui+1

l = uB does not change
the result of the simulation if the total simulation time is not
close to τ1.

THERMAL MODEL VALIDATION

To validate the code we used both an analytical solution and
a test case found in the literature. Analytical solutions are very
difficult to find and are only available for simple problems. For
this reason we tested a simpler version of the code with only
solid and liquid phases.

Analytical Solution: The Neumann Solution

The similarity solution originally obtained by Frank Neu-
mann in 1860 for the solidification of a liquid phase can also
be used for the inverse process. It is based on a particular so-
lution of the heat equation that can be written in terms of error
functions.

The problem considered is described by Eqs. (1)–(3) without
taking into account the heat generation terms and with boundary
and initial conditions:

Tl = T0 for X = 0, t � 0 (35)

Ts = Ti for X = ∞, t � 0 (36)

Tl = Ts = Tm for X = S1(t), t � 0 (37)

Following the known resolution described by Crank [2] with
some variations, verified by comparison with the Gupta [15]
work, we can give the solution of Eqs. (1) and (2) as

Tl = T0 + A erf

(
Xl

2
√

αl t

)
(38)

Ts = Ti + B erfc

(
Xs

2
√

αs t

)
(39)

Let S1(t) be given by

S1(t) = 2λ
√

αl t

heat transfer engineering vol. 36 no. 6 2015
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Figure 4 Percent error of our calculated S1(t) with respect to Neumann’s
analytical solution. Error is provided for different mesh sizes; the legend shows
the mesh size with respect to the total length of the slab.

where λ is an unknown constant. For X = S1(t), Eqs. (38)
and (39) are equal to Tm for the boundary condition. Hence,
with the previous definition of S1(t),

A = Tm − T0

erf (λ)

B = Tm − Ti

erfc
(
λ
√

αl
αs

)

Now, taking the derivatives of Eqs. (38) and (39) and inserting
into Eq. (3) with the obtained values of A and B, we finally obtain

exp(−λ2)

erf(λ)
+ ks

kl

(Tm − Ti )

(Tm − T0)

√
αl

αs

exp
(
−λ2 αl

αs

)
erfc

(
λ
√

αl
αs

) = − Cmλ
√

π

cl (Tm − T0)

(40)
Calculating λ from Eq. (40) with a numerical or graphical

method we obtain the final time-dependent temperature profile
and the movement of the boundary.

Figure 4 shows the convergence of the numerical solution to
the analytical one. Except at the very beginning of the simula-
tion where it is not possible to start from zero for initialization
issues, the difference between the two solutions quickly drops
to less than 1% even with the biggest mesh size. This means
that the accuracy of the calculation always grows in time, and
the solution does not diverge.
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Figure 5 Our code simulation of Bonnerot’s numerical problem: showing
appearance, movement, and disappearance of the free boundaries on the x − t
plane. Solid, liquid, and vapor phase appear at increasing t. Heat flux is applied
at x = 1.

Comparison with Previous Numerical Solution

Bonnerot and Jamet [5] proposed a solution for a two-phase
Stefan problem using a finite-element method; they also mod-
eled the appearance and disappearance of new phases. Our code
has been modified to enforce an adiabatic condition at the end
of the slab, as in the considered paper. The physical values used
are:

Tm = 1454 K Tv = 3000 K
T0(X ) = T0 = 27 K F(t) = F = 2500 W/m2

cl = cs = 1.7848 J/(kgK ) ρ = 2.77 kg/m3

a = 1 m ks = 0.259 W/(mK )
kl = 0.259 W/(mK ) Cm = 779.8 J/kg
Cv = 13430 J/kg

The results obtained for the boundary movement S1(t) and
S2(t) are shown in Figures 5 and 6. The comparison with the
code of Bonnerot and Jamet [5] is shown in Figures 7 and 8
where the ratio between the values of the two solutions is plot-
ted versus the time t. It is easy to observe that the two methods
produced the same results, that is, a ratio close to 1, with a dif-
ference smaller than 3%, except where one of the two values is
close to zero because of the numerical imposition of the bound-
ary conditions (slab thickness and axis origin). This pushes the
ratio toward higher yet nonphysical values.

Comparison with Previous Numerical Solution

Another comparison with previous literature was carried out
with the work of Belkin [16]. His experimental data can be
normalized in order to obtain a self-similar curve of a dimen-
sionless ejected mass independent of the heat flux incoming on

heat transfer engineering vol. 36 no. 6 2015
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Figure 6 Our code simulation of Bonnerot’s numerical problem: velocities of
the free boundaries d S1/dt and d S2/dt plotted vs. time.

the surface, while eliminating the dependence on the total time
of the arc discharge. This allows us also to validate our model
from the point of view of the vaporization process:

M∗
l = Ml

Qb

cs Tm

M∗
v = Mv

Qb

cl Tm

[
qb

√
td
]∗ = qb

√
td

Tm
√

clρkl

where M∗
l and M∗

v are the liquid and vapor nondimensional
ejected mass, and td is the total discharge time during which the
flux qb is assumed constant.

Figure 9 shows the nondimensional mass flow rates for liquid
and vapor phase, evaluated by our code, plotted versus a nondi-
mensional parameter

[
qb

√
td
]∗

that is a function of the heat flux
and the discharge time. The results are quite similar to those
that can be found in reference 16. Belkin identifies the onset of
fusion as [

qb
√

td
]∗ =

√
π/4 = 0.885

According to him, at low fluxes the metal is heated to fusion
conditions at shallow depths and heat is transported deeper into
the metal by thermal diffusivity. For high heat flux, that is, large[
qb

√
td
]∗

, there is an intense vaporization of the surface and
only a fraction of the energy is carried by conduction. Almost
all the input energy is consumed by the vaporization of nearly
all of the fused metal, leading to a small difference between M∗

l

and M∗
v . In our result,

[
qb

√
td
]∗

is about 0.7, which is close to
Belkin’s value.

It is interesting to note that the maximum of the M∗
l curve,

and so the onset of vaporization, can vary strongly with the im-
posed vapor temperature Tv . This means such a self-similarity
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Figure 7 Comparison between our code and Bonnerot’s code. Ratios of the
boundary positions S1 (continuous line) and S2 (dashed line) with respect to
time calculated with our code and Bonnerot’s code.
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Figure 9 Results of our code. Normalization of copper simulation results
according to Belkin method for evaluating experimental data.

is not maintained if pressure varies during the experiment,
because of the boiling point variation. Belkin [16] developed
an approximate expression for M∗

l valid within the range
55 × 109 − 5 × 1011W/m2:

M∗
l approx = 1.3

[qb
√

τd ]∗

[
1 − 0.885

[qb
√

τd ]∗

]

which is only valid for one pressure. Nevertheless, some authors
[13, 17] refer to this expression when calculating electrode evap-
oration without concern for this limitation.

CONCLUSIONS

The numerical solution of a one-dimensional, three-phase
Stefan problem with a low Stefan number has been presented.
The fundamental equations governing the phenomenon and the
numerical approach used to solve the problem have been de-
scribed. The results are in agreement with a previous solution
obtained with a different numerical method and with experi-
mental data found in literature.

NOMENCLATURE

a length of the slab (m)
A coefficient of the Neumann analytical solution
B coefficient of the Neumann analytical solution
cs specific heat of solid (J/kg-K)
cl specific heat of liquid (J/kg-K)
Cm latent heat of melting (J/kg)
Cv latent heat of vaporization (J/kg)
i integer index of the domain mesh
f (τ) dimensionless inbound heat flux in Stefan equation
fl (τ) dimensionless inbound heat flux in boundary condition

for liquid phase

fs(τ) dimensionless inbound heat flux in boundary condition
for solid phase

F(t) inbound heat flux (W/m2)
gl dimensionless heat generation term in liquid
gs dimensionless heat generation term in solid
j current density (A/m2)
k integer index for simulation time-step progression
k̃ ratio of solid and liquid thermal conductivities
kl thermal conductivity of liquid (W/m-K)
ks thermal conductivity of solid (W/m-K)
Ml melted mass (kg)
Mv vaporized mass (kg)
p fractional parameter for the s1 tracking
qb inbound heat flux (W/m2)
qr radiative heat flux (W/m2)
Qb inbound energy provided during td (W)
r arbitrary characteristic length (m)
rd diffusion length (m)
s1 dimensionless position of the solid–liquid interface
s2 dimensionless position of the liquid–vapor interface
S1 dimensional position of the solid–liquid interface (m)
S2 dimensional position of the liquid–vapor interface (m)
Ste Stefan number
t time (s)
td characteristic time of the phenomenon, i.e. discharge time

(s)
Ti initial system temperature (anode and environment) (K)
Tl liquid temperature (K)
Tm melting temperature (K)
Ts solid temperature (K)
Tsur f temperature of the surface exposed to vapor phase (K)
Tv vaporization temperature (K)
uB dimensionless melting temperature
ul dimensionless liquid temperature
us dimensionless solid temperature
uv dimensionless vapor temperature
v fractional parameter for the s2 tracking
x dimensionless spatial coordinate
xl dimensionless spatial coordinate for the liquid domain
xs dimensionless spatial coordinate for the solid domain
X dimensional spatial coordinate (m)
Xl dimensional spatial coordinate for the liquid domain (m)
Xs dimensional spatial coordinate for the solid domain (m)

Greek Symbols

αs diffusivity of solid (m2/s)
αl diffusivity of liquid (m2/s)
γl dimensionless multiplier proportional to Ste
γlv dimensionless multiplier proportional to λv

ε emissivity
ηs resistivity of solid (�−m)
ηl resistivity of liquid (�−m)
λv ratio of sensible heat of solid and latent heat of vaporization
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ρ density (kg/m3)
τ dimensionless time
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