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1. Introduction

With the advancements in computer science, the study of clustering has gained increasing interest in the last decades,
due to its several technical applications, ranging from machine learning [1], to data mining [2], including a number of tools
for scientific research [3], logistics [4], and everyday life [5].

Indeed, in the study of many engineering and physical phenomena, data appear to be conditioned by several parameters.
When analytical models are not available, the correlation between multivariate data and the corresponding parameter
configurations can be usually obtained only by means of numerical simulations or experiments. Unfortunately, the nature
of this correlation may remain unknown. Moreover, it is sometimes observed that experiments performed with different
operational conditions may produce similar results. The first step to understand the data underlying structure, therefore,
may consist in determining the families of configurations which lead to comparable results.

Since the first works, e.g., [6], statistical clustering has been used to provide a classification of a set of multivariate data,
based on some similarities among the members of the same set (termed cluster). Flat clustering methods, in particular,
identify a given number of sets and assign each configuration to one of them. Algorithms for flat clustering are usually very
fast. On the contrary, the quality of the results depends in general on a-priori choices, e.g., the number of clusters: the research
of the optimal number of clusters requires additional computations. Moreover, flat clustering methods cannot distinguish
between “close” and “closer” configurations. These limitations are overcome by hierarchical clustering: the clusters are
recursively identified and partitioned into sub-cluster, each characterized by an increasing degree of similarity among the
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belonging elements. Despite the slightly larger computational cost, therefore, hierarchical clustering methods retrieve a
larger number of informations. Classical hierarchical clustering methods can be either agglomerative (or bottom-up) or
divisive (or top-down): the first ones start out with as many clusters as the number of data - i.e,, all the clusters are singleton
sets — and, at each iteration, they gather them together until a single cluster is built, containing all data. On the contrary, the
second ones start out with a whole set containing all data, and recursively partition it into smaller subsets until the selected
level of detail. For complete introductions and descriptions of statistic clustering, the reader is addressed to [7,8].

Despite the better insight in the data structure provided, also hierarchical clustering methods suffer from some
limitations. The resulting clustering, indeed, is non-unique, as it depends on the method used to quantify the similarity
between its elements [9,10], on the treatment adopted to deal with special cases [11] and, mostly, on the data scaling
[12-14]. To overcome the latter limitation, several solutions have been proposed so far. A first attempt to produce scale-
invariant clusters [15] was based on the so-called Mahalanobis distance [16]. The latter is derived from the Euclidean
distance, but it is made scale-invariant by introducing a normalization with respect to the data covariance. However, as
pointed out by later works, the use of the variance to normalize data may result in meaningless clusters [17]. One of the
most effective technique to find robust, scale-invariant clustering is based on a geometric approach, the so-called “minimum
volume ellipsoids method”, which allows to both disengage the results from the data scaling and to control the significance
of the results [18-20]. Unfortunately, the computational efficiency of these geometric methods is usually lower than non-
geometric ones.

To fill this gap, in this paper we introduce a novel, enhanced technique for hierarchical agglomerative clustering. The
method is based on a geometric approach and, at the same time, on the definition of a weighted asymmetric distance
function. The advantages of the adopted function are threefold: on the one hand, it allows to disengage the resulting
clustering from the data scaling. On the other hand, thanks to the definition of the distance function, it requires the same
computational effort as non-geometric methods. Eventually, the proposed technique intrinsically manages the measurement
uncertainty, if any, even if the statistical distribution of the error is unknown. Therefore, this method can be successfully
applied to both fully deterministic data and to experimental results affected by errors. When experimental results are
analyzed, indeed, the choice of a suitable, robust clustering procedure is particularly relevant. On the one hand, the numerical
values of the data, indeed, depend on arbitrary choices, e.g the units of measurement, the use of dimensional or dimensionless
variables, the normalization of the results with respect to a reference value. An effective clustering method, therefore, must
be scale-invariant. On the second hand, experimental data are usually affected by the measurement uncertainty: for this
reason, a robust procedure should be recommended. Previous works on the clustering of non-deterministic data often require
to know in advance the probability density function of the data [21-23], which may be unknown.

This work stems from the results of a long-term experimental campaign carried out at the ThermALab of Energy
Department of Politecnico di Milano on the enhancement of heat transfer in forced convection of air flows through
rectangular channels by means of square ribs in large variety of geometrical configurations. The Nusselt number and the
friction factor - indicators of thermal and hydraulic performances, respectively - were experimentally measured. The ribs
enhance heat transfer by periodically deflecting streamlines, interrupting boundary layer growth and destabilizing the flow.
All these effects bring about an early transition to turbulent regime or promote turbulence. Unfortunately, to force a flow
through a ribbed channel at a given Reynolds number, a larger pumping power is required, resulting in lower hydraulic
performances with respect to a smooth channel in the same conditions. For each flow Reynolds number, a large number of
rib geometries and configurations were tested, since the program was aimed at investigating the optimal rib configuration,
i.e., producing the best compromise between the heat transfer enhancement and the induced hydraulic losses. The results
showed a large dispersion of the data, and the apparent lack of an underlying criterion. For this reason, a cluster analysis was
first performed on experimental data, in order to determine a possible structure, by means of classical clustering methods.
Both plain data - i.e., on the Nusselt number and on the friction factor resulting from the experiments - and the same
data normalized with respect to the Nusselt number and on the friction factor of the reference configuration - the smooth
channel - were analyzed, in order to highlight both the absolute performances of each configurations and the difference
with respect to the reference case. Unfortunately, the results of the clustering analysis of non-normalized and of normalized
data were completely different. This fact represented an unexpected additional difficulty, since it is commonly enough to
use non-dimensional number - i.e., Reynolds and Nusselt numbers and the friction factor - in order to provide unique
correlations in most thermo-fluid-dynamical problems. On the contrary, the obtained clustering was not unique, highlighting
a sensitivity problem. As observed also in other scientific researches dealing with different metrics [24], it can become a hard
task to understand a priori whether non-normalized or normalized data should be used for the clustering. Moreover, classical
clusterings proved to be not helpful in the perspective of determining the channel performances for two additional reasons.
On the one hand, the effect of the measurement uncertainty was not known. On the other hand, classical methods forced
to attribute the same relevance to both the performance indicators, whereas it is known that, depending on the technical
applications, either the thermal or the hydraulic aspect must be privileged. To overcome these limitations, the novel method
has been devised.

The paper is structured as follows: Section 2 reports the formulation of the method. In particular, the novel function
adopted to measure the proximity between elements is defined, and its physical and geometrical interpretation is provided.
An example of clustering obtained by means of the proposed method is provided in Section 3, including a comparison with
the results of a classical clustering procedure. Conclusions and final remarks are reported in Section 4.
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2. Description of the method
2.1. Overview and geometrical formulation

For both agglomerative and divisive hierarchical clustering, it is mandatory to define some criteria to quantify the
similarity among the elements of each cluster. In general, these criteria concern the following possibilities.

e A measure of the proximity between two elements (two configuration, two clusters or a configuration and a cluster),
which depends only on a geometrical property, i.e., the metrics of the space which represent the data: in general,
p-norms are used.

e The so-called linkage, i.e., a criterion to select a representative of each cluster, that is a method to associate to a
set of points the coordinates of a single point only. This choice is non-trivial, as it is based on both statistical and
circumstantial considerations, e.g. the physics of the problem under scrutiny.

e Ascaling of the data. This point strongly influences the resulting clustering, and may depend significantly on the field
of application.

To compute the hierarchical clustering of a dataset by means of agglomerative methods, only iterative procedures have
been proposed so far [7]. Classical agglomerative methods will be hereafter defined “static” as they prescribe that, at each
iteration, a matrix of distances between each couple of elements is computed, in accordance with the selected proximity
measure. The so-called inclusion criterion required to build the clusters is that the couple of elements resulting in the
least distance is merged together to form a new cluster. The process then continues until all the data are merged into a
unique cluster. At each iteration, the level of dissimilarity between the two merged elements is given by the least value
of the distances matrix. Of course, once the above parameters have been set, the calculation of the distances matrix is
straightforward. The general schematic of a static clustering method is represented in the flowchart plotted in Fig. 1(a).
The main drawback of static methods is that the clustering is very sensitive to the scaling, and quite sensitive with respect
to both the metric and the linkage. If on one hand static methods result unsuitable for clustering experimental data due
to this lack of robustness, on the other hand they represent a good starting point to develop enhanced, more robust and
physically-oriented clustering methods.

The proposed clustering method is called “dynamic”, and it is still an agglomerative, bottom-up technique, but adopts
a similarity criterion which disengages the results from the data scaling. With reference to Fig. 1(b), the structure of the
dynamic method partially follows the static methods’. In the geometric interpretation of the method, multivariate data are
arranged in a Cartesian hyper-plane, whose axes represent each of the parameters. The dynamic method prescribes, at each
iteration, to build a bounding box around each element (configuration or cluster). The bounding box is a hyper-rectangle
centered on the element. Each side of the bounding box is parallel to one of the Cartesian axes, and its length is twice a
given percentage of the value of the coordinate of the point along the considered direction. The inclusion criterion states
that if an element is included in the bounding box of another element, then the two elements are merged in a cluster. In the
proposed dynamic method, the level of dissimilarity between the two merged elements is the selected percentage. The value
of the percentage is step-by-step increased at each iteration, starting from a generic “low” initial value. If, in a given range of
percentages, more than one clustering are found, the percentage increment is reduced until only one new clustering is built.

The method is termed dynamic because the proximity is independent from the elements coordinates, and therefore the
ordinate of the resulting dendrogram represents the real increasing relative similarity among the elements of the same
cluster. Therefore, the increasing size of the bounding box drives the continuation of the agglomerative procedure.

A special treatment must be introduced to deal with the so-called ties in proximity problem [25,26]. This consists in the
inclusion of multiple elements in one bounding box for the same level of dissimilarity, that is, one element can be merged
with more than one other element at the same time. Unlike most static methods, the proposed dynamic method does not
require to merge exactly two elements per iteration, but it allows to merge multiple points. This solution allows to avoid the
use of arbitrary solutions to the ties in proximity problem or complex representations of the resulting clustering.

2.2. Application to experimental data

Considering the possible applications of the proposed method, i.e., the clustering of experimental data, the dynamical
clustering presents two additional advantages. The first one is that it allows to distinguish between meaningful and spurious
aggregations, the latter resulting from experimental errors. The measurement uncertainty on each point represents indeed
the half-side of a bounding box itself. Therefore, all the clusters with an internal level of dissimilarity larger than the
measurement uncertainty represent genuine families of configurations; on the contrary, a lower internal similarity level
indicates only a generic “proximity” among some elements, which cannot be further quantified.

The second advantage concerns the nature of multivariate data, i.e., observation on a number of variables. Depending
on the problem, it is sometimes useful to make the cluster more inclusive with respect to one or more variables, and more
selective with respect to the other ones. The dynamic method allows to account for the effect of weighting of the diverse
variables which make up the multivariate data. This results from the disengagement of the inclusion criterion from the
data value, which introduces a new degree of freedom. The aspect ratio of the bounding boxes can be therefore modified in
order to make the clustering more inclusive along a specific direction. The practical consequence is that the clustering can
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Fig. 1. Flowchart of (a) a generic static and (b) the dynamic methods, respectively. The dashed boxes in the background highlight the difference between
the two clustering approaches.

be tailored to different applications, depending on the relevance assigned to each variable. The choice of the aspect ratio
numerical value - equal to 1, by default - is therefore left to the user, who can either rely on previous experience and design
specifications, or, otherwise, perform sensitivity analyses.

2.3. Definition and considerations on the adopted proximity measure

The geometric approach is direct and robust; unfortunately, its computational cost is much larger than that required by
standard clustering techniques. Therefore, it is strongly recommended to connect the dynamic method to classical ones, in
order to take advantage of their computational efficiency. To link the hierarchical-clustering dynamic method to static ones,
therefore, a new proximity measure is introduced, that will be hereafter termed “weighted asymmetric co-pseudometric”
and indicated with the symbol d7, . Let the multivariate data be represented by the elements P, Q depending on N variables
in V, where V = RN. The new measure of proximity is defined as a function di, :V xV — [0, 00) such that

)
= min (max < lim, )) (1)

wi
,max | lim
wi i wj—Q;

where P;, Q; are the values of the ith variable making up the multivariate data, and w; the corresponding value of a weight.
The fractions are computed by means of a limit operator to account for the possibility of zero-value variables.

The function d}, is called “oco-pseudometric” since it derives from the Chebyshev distance L, as they would be coincident
if the difference between P; and Q; were not weighted with w;. However, d does not represent a metric, as it satisfies only
three out of the four conditions required for its definition [27]:

d*,(P,Q)= min (max ( lim

R=P.Q \ i \wi—R

P —Q

Wi

1. non-negativity: d% (P, Q) > 0.Itdirectly stems from the definition, being d’, the minimum between two non-negative
numbers, i.e., the maxima over a set of absolute values.
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2. identity of indiscernibles: d3 (P,Q) = 0 <= P = Q. The proof is provided by biconditional introduction. If
P = Q, then P; = Q; Vi, and therefore |P; — Q;|] = 0 Vi. Since the denominator is always non-zero by definition,
also |P; — Q;| /w; = 0 Vi, including the maximum over i. Vice versa, to prove the claim in the opposite direction
ad absurdum, let P # Q. There is at least one variable i such that P; # Q, i.e., P; and Q; are separated. Therefore,
Ji | |P; — Q;] > 0and 3i ‘ |P; — Qi| /w; > 0, since w; > 0 by definition. Therefore, max |(P; — Q;) /w;| > 0 for both

1

w; — P;and w; — Q; and, eventually, d¥_(P, Q) > 0 is computed as the minimum between two non-zero elements,
which is in contradiction with the claim that d’ (P, Q) = 0.
3. symmetry: d} (P, Q) = d’ (Q, P). Foreachi, |Q; — Pi| = |-1(P; — Q)| = |—=1] |P; — Qi| = |P; — Q;|. Therefore,

i — Pi . i — P;
d*.(Q,P) = min <max( lim ‘Q' ) , max ( lim Q-h )) _
i i wij—P; wj
i PG .| Pi-Q
= min (max( lim ’ D , max ( lim )) =
i wi—>Q; wj i wj—P; w;

i wi—Q; wj
. [P -0 - |[P—Q
=min | max (| lim ,max | lim =
i wi—P; W i wi—>Q; Wi
=d3,(P,Q) (2)

where the last equality is made possible by the commutativity of the minimum operator.

By contrast, the fourth condition, i.e., triangle inequality (VR € V, d3 (P, Q) < d%.(P, R) + d’ (R, Q)), does not hold for
d?.. This can be verified by counterexample, e.g. by computing the relative proximity between the points P(10, 1), Q(1, 4)

and R(2, 2):
" . ( (10—1 1—4) (‘10—]’ ’1—4))
d>(P, Q) = min | max , |——1 ), max Y [— =
10 1 1 4 (3a)
=min(3,9) =3
. . ( (‘10 2’ ‘1—2) (‘10—2 1—2))
d’ (P, R) = min | max | — =
2 2 (3b)
=min(1,4) =1
. < (‘2—1 ‘2—4) <2—1 2—4))
d’.(R, Q) = min | max — ), max | |——|, | —— =
2 1 4 (3c)
=min(1,1) =1

which give d% (P, Q) > d (P, R) + di (R, Q). Therefore, the fourth condition required by the definition of a metric is not
satisfied, and d’, cannot be considered a metric: for this reason, it is defined “pseudometric”.

Moreover, d7 is not a norm, as well. Indeed, d’;, satisfies the first two conditions required by the definition of a norm (it
is a positive-semidefinite function and it is sub-additive, as previously proven), but it is not homogeneous of degree 1 [27].
For all scalar A € R, indeed d’ (AP, AQ) # |A| d% (P, Q). From Eq. (1),

AP; — AQ; . AP; — AQ;
——| ), max| lim |——— (4)
i wj—>AQ; Wi
For the linearity of the limit operator, one has

Wi
AP — A AP — A
d Ql‘),max( lim ‘ d Q’D) (5)
Aw; i \wi~Q |  Aw;
From Eqs. (4)-(5),

Al - P —Q Al- P — O;
d&UP,kQ)=rmn<nmx<lm1LJ—LL—£Q>,HHX<1m1ngLL4£Q>>
i wi—Pi ] - |wi i wi—Q  |A| - |wj

! < ( Pi_Qi‘) ( ‘Pi_Qi‘>>
= min | max [ lim ,max | lim =
i wi—>P; wi i wi—>Q; wi
=d3,(P.Q) (6)

which does not satisfy homogeneity of degree 1.

d?, is defined an “asymmetric” pseudometric despite it satisfies property 3.. The non-symmetry, indeed, is observed
only in the geometrical interpretation of the distance, i.e., the one based on the construction of bounding boxes around the
element. Indeed, for a given proximity d’_(P, Q) between two elements P and Q, in general, only one element is included
in the bounding box of the other one. The bounding box of an element, therefore, can be interpreted as a circle centered in
the element, and whose radius, measured by means of the novel pseudometric, has value equal to d’_. As a consequence, if

i wij—>AP;

d’ (AP, 2Q) = min (max ( lim

d% (AP, 2Q) = min (max ( lim

i w;j—P;
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Fig. 2. Two-dimensional data for the toy-problem, arranged in the X-Y plane. Data are (a) non-normalized and (b) normalized with the largest coordinates,
to fit in the unit square.

the boxes aspect ratio is varied by the user to make the clustering more inclusive in a specific direction, the bounding boxes
become ellipsoids.

Due to the definition of the d}_-pseudometric, the dynamic clustering can be computed by means of standard algorithm
for agglomerative hierarchical clustering, which are based on the definition of a proximity measure. Therefore, no additional
computational cost is required by the dynamic method.

2.4. Application to flat clustering

By analogy with other hierarchical methods, a flat clustering can be easily extracted from the hierarchical one resulting
from the proposed procedure. To obtain the flat clustering, if the hierarchical clustering is represented by means of a
dendrogram, the latter can be simply cut in correspondence of either the selected level of dissimilarity or the chosen number
of clusters.

Obtaining a flat clustering from hierarchical ones is in general less efficient than directly computing it. However, the
optimization of the flat clustering resulting from dedicated algorithms can require a non-negligible increment of the
computational time. Moreover, flat clustering methods are based on the divisive approach, which is in general more sensitive
to the data distribution. For these reasons, computing a flat clustering from hierarchical may turn out to be convenient in
terms of both computational time and accuracy.

3. Results of the clustering method

To represent the proposed evolution of the agglomerative hierarchical clustering method, a toy-problem is adopted.
The configurations are represented by a generic set of points. In the example, each point is identified by two coordinates,
i.e.,, X and Y, but the method can be generalized to spaces of any dimension. Both non-normalized and normalized data
are analyzed. Fig. 2 shows the initial, unclustered points: Fig. 2(a) represents the non-normalized data, whereas Fig. 2(b)
concerns the same data after they have been normalized to fit in the unit-square.

A static method for hierarchical agglomerative clustering is applied, using the euclidean norm to measure the distance and
selecting the so-called centroid linkage, i.e., the representation of a cluster by means of its centroid. The resulting hierarchical
clustering is represented in Fig. 3 by means of dendrograms, where each node represents a cluster containing all the points
(reported in abscissa) that branch from it. The ordinate of every node indicates the dissimilarity among the cluster elements,
i.e., their euclidean distance. Fig. 3(a) concerns non-normalized data, whereas 3(b) reports the dendrogram resulting from
the clustering of the normalized data. As expected, the two dendrograms are totally different, that is, the static procedure
is too sensitive with respect to the scaling of the data. The occurrence of this problem is systematically observed in all the
static clustering methods, regardless of the adopted metric or linkage.

Conversely, the dynamic method produces stable results with respect to the scaling. Figs. 4 and 5 depict the construction
of the bounding boxes around each element, for non-normalized and normalized data, respectively. It is evident that, when
the “weighted asymmetric co-pseudometric” d7 is adopted, the data clustering is not sensitive with respect to the data
scaling.

Fig. 6 shows the dendrograms resulting from the clustering of the set of points represented in Fig. 2 by means of the
dynamic building of bounding boxes. The dendrogram of non-normalized data is shown in Fig. 6(a). The dendrogram
resulting from the clustering of the same data scaled to fit in the unit square is reported in Fig. 6(b): it can be observed
that the provided clustering is identical, indicating the stability of the dynamic method.

Since the measurement error is usually expressed in terms of a fraction of the reference numerical value of each measured
variable, the dynamic method provides an immediate indication of which clusters are meaningful and which spurious. The
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(g) Step 7, d%, = 73%.

(h) Step 8, d’, = 79%.

(i) Final step, d%, = 79%.

Fig. 5. Step-by-step computation of the agglomerative hierarchical clustering by means of the dynamic method. The adopted dataset is the one depicted
in Fig. 2, with a normalization to fit in the unit square. The empty circles represent the generic elements. In each snapshot, the pair of merged elements is
represented by a bullet. The rectangles with increasing size are the bounding boxes of each elements. When two elements cluster at a given iteration, they
are substituted by the centroid of the cluster in next iterations.

latter ones, indeed, are associated to an internal level of dissimilarity lower than the measurement error. Therefore, to
provide a robust clustering with respect to the measurement uncertainty, the cluster whose internal dissimilarity (measured
with d}, ) is lower than the uncertainty are treated as flat ones, since any further insight in their internal structure lies in the
uncertainty interval of data.

In the described toy-problem, the measurement uncertainty value is set equal to 10%. In the corresponding dendrogram
obtained by means of the dynamic method (see Fig. 6), the threshold corresponding to the measurement uncertainty is
represented by a horizontal, thick line. With reference to Fig. 5(b), the level of internal dissimilarity of the cluster containing
the configuration B, C and D is of 6%, lower than 10%: therefore, B, C and D are assumed to cluster together, but without any
internal hierarchy.

Figs. 7 and 8 show the procedure and the dendrogram resulting from the dynamic clustering of the same initial data as
in Fig. 2, when the boxes aspect ratio is set equal to 5 in the horizontal direction. As it is visible, the bounding boxes appear
to be stretched, and therefore less selective, in the X-direction. The adoption of non-unit aspect ratio for the bounding box
can be useful in a number of cases, e.g., when the goal of the clustering is the optimization of an objective function. In this
case, indeed, the diverse variables which make up the multivariate data have, in general, a different relevance. Therefore,
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Fig. 6. Dendrograms resulting from the dynamic clustering procedure applied to the toy-problem: 6(a) non-normalized and 6(b) normalized data, both
coming from the same dataset. The absolute coincidence of the resulting dendrograms highlights the capability of the novel dynamic method of disengaging
the result from the data scaling. The horizontal line separates clustering with an internal dissimilarity level larger or lower than the measurement

uncertainty.
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(g) Step 7, d, = 38.5%.

(h) Step 8, d*, = 78.5%.

(i) Final step, d%, = 78.5%.

Fig. 7. Step-by-step computation of the agglomerative hierarchical clustering by means of the dynamic method. The adopted dataset is the one depicted
in Fig. 2, without normalization. The clustering is made more inclusive in the X-direction, with an aspect ratio of the bounding boxes set equal to 5.
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Fig. 8. Dendrograms resulting from the dynamic clustering procedure applied to the toy-problem: 8(a) non-normalized and 8(b) normalized data, both
coming from the same dataset. The boxes aspect ratio is set equal to 5. The absolute coincidence of the dendrograms resulting from the dynamic method
is preserved also when the aspect ratio of the bounding box is different from one.

the lower the aspect ratio in a given direction, the more selective is the clustering with respect to the specific variable and,
for this reason, the more sensitive is the optimum with respect to it. By tuning the aspect ratio, the user can directly tailor
the method to fit to the problem under scrutiny.

Unfortunately, when different bounding box aspect ratios are devised from the unity, the comparison between the
cluster internal dissimilarity level and the measurement uncertainty is less immediate than in the case of unity-aspect
ratio. Therefore, the dendrograms do not report the horizontal line which represents the minimum meaningful internal
dissimilarity of the clusters.

For brevity, the clustering procedure is illustrated only for non-normalized data, because the adoption of a different
box aspect ratio does not affect the disengagement of the dynamic method from the data scaling. This can be observed by
comparing the resulting dendrograms depicted in Fig. 8(a) and 8(b), concerning the non-normalized and the normalized
data, respectively.

4. Conclusions and final remarks

A novel method for clustering of experimental data was presented and duly discussed. The new formulation stems from
the observation that the clustering resulting from classical methods are not unique, since the computation of the proximity
between the elements is not robust with respect to the data scaling and to the measurement error, if any.

The proposed clustering method is an agglomerative technique, based on the detection of the reciprocal inclusion of each
configuration in another one’s bounding box. The bounding box are built around the elements, and their size is dynamically
associated to the level of advancement of the clustering procedure.

A new distance function was defined, i.e. the “weighted asymmetric co-pseudometric”. The latter allowed to compute
the dynamic clustering by means of standard algorithms, which are in general more efficient than the one based on the direct
building of bounding boxes. The dynamic method was tested against static ones by means of a toy-problem. The example
showed that the advantages are threefold. On the one hand, the dynamic method provides identical clustering for initial data
with the same distribution, regardless of their scaling. On the other hand, information on the measurement error are not lost
during the clustering procedure, but are considered a-posteriori, by means of a direct comparison between the uncertainty
on initial data and the internal dissimilarity of the clusters. The a-posteriori retrieval of these information does not increase
the required computational cost. Eventually, the aspect ratio of the boxes can be modified, in order to make the clustering
more selective with respect to the most relevant variables. This possibility results from the disengagement of the clustering
from the data scaling, and it allows to tailor the procedure to the nature of each specific dataset.

It is the authors’ belief that further developments may include different aspects. The two most immediate improvements
involve, on the first hand, the derivation of a technique for the evaluation of the most suitable bounding box aspect ratio, in
the perspective of providing a complete method to any user. On the other hand, the integration of the proposed clustering
technique with pattern identification should be worked out, in particular for making data analysis more automatic and
robust.
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